EXAMPLE 12: RAIL ANCHOR SLAB DESIGN

General Information

Rail anchor slabs have been used with good performance under Allowable Strength Design (ASD) practices. AASHTO LRFD has since become the design standard and uses impact loads significantly larger than those in ASD. The LRFD impact loads result in a rail anchor slab that is much larger than what has proven successful in the past. NCHRP Report 663 concluded that AASHTO LRFD dynamic impact loads result in an overly conservative design for rail anchor slabs. New guidelines were established and validated through finite element modeling and full scale testing. NCHRP Report 663 recommends that a static load equivalent (L_s) of 10 kip be used to design rail anchor slabs for overturning and sliding design in lieu of AASHTO LRFD impact loads from Chapter 13. The static load equivalent of 10 kip is appropriate for designing rail anchor slabs for TL-4 test levels.

Figure 1 - Rail Anchor Slab

Rail Anchor Slab Inputs

This example illustrates the design of a rail anchor slab based on recommendations from NCHRP Report 663. Dimensions for this example are taken from CDOT Standard Sheet B-504-V1. Refer to this standard for additional details.

Concrete Unit Weight	γ _{conc.} =	0.150	kcf	CDOT BDM 3.4.4.1
Asphalt Unit Weight	γ _{asph.} =	0.147	kcf	CDOT BDM 3.4.2
Rail Anchor Slab Width	w _{slab} =	8	ft.	
Rail Anchor Slab Thickness	t _{slab} =	12	in.	
Rail Anchor Slab Length	I _{rail} =	30.0	ft.	(Length between expansion joints)
Asphalt Overlay Thickness	t _{asph.} =	3	in.	

Bridge Rail Type 7 Width	w _{rail} =	18	in.
Coping Depth	$h_{coping} =$	12	in.
Coping Width	$w_{coping} =$	8	in.
Retaining Wall Thickness	t _{wall} =	12	in.

Rail Anchor Slab Overturning

The overturning moment (M_r) caused by the impact of the vehicle shall be less than the stabilizing moment (M_n) created by the rail anchor slab dead weight. As show in Figure 1, the point of rotation, Point A, is assumed to be at the top, back face of the retaining wall and the structural backfill. In this design example, compressible joint material is placed on top of the wall to protect it, allowing the rail anchor slab to rotate before coming into contact with the wall. The maximum length of rail anchor slab assumed to resist the overturning moment is 60 ft. This limit is assumed to be the extents of rigid body behavior in rail anchor slabs, and is often governed by the spacing of expansion joints perpendicular to the CL of the roadway.

$$\phi\;M_{n\,=}\,\phi\,\Sigma$$
 (DL Moments) $\geq M_{u}$ = $\gamma_{\text{CT}}\;M_{r}$ NCHRP Report 663 (7-3,7-4)
$$M_{r}=L_{s}\;H_{a}$$

Test Level		TL-4		CDOT BDM 13.3.3
Resistance Factor	$\phi =$	0.9		NCHRP Report 663 A1.4.3
Collision Load Factor	$\gamma_{CT} =$	1.0	(Extreme Event II)	AASHTO Table 3.4.1-1
Static Load Equivalent	L _s =	10.0	kip	NCHRP Report 663
Height of Impact Above Roadway	H _e =	32	in.	AASHTO A13.2-1
Dist. from B.F. Rail to 'Pt. A'	I _a =	1.71	ft.	
Dist. from C.G. to 'Pt. A'	$I_{b} =$	See table	ebelow	
Dist. from Impact Load to 'Pt. A'	h _a =	3.92	ft.	$(h_a = H_e + t_{asph.} + t_{slab})$
Factored Overturning Moment	M _u =	39.2	k-ft.	

To calculate M_n, the dead loads are tabulated and multiplied by the distance from their center of gravity to Point A (I_b). The distance between expansion joints in this example is 30 ft.

Tabulation of Dead Load Moments about Point A

Weight = Area * Y conc. Moment = Weight $*I_{b}$ Total DL Moment = Moment * I rail Ref. B-606-7A for rail weight and C.G. from BDM Ex. 6

						Total DL		
	Height	Width	Weight	l _b	Moment	Moment		
	(ft.)	(ft.)	(k/ft.)	(ft.)	(k-ft/ft.)	(k-ft.)		
Type 7 Bridge Rail			0.486	-1.14	-0.55	-16.6		
Coping	1.00	0.67	0.10	-1.38	-0.14	-4.1		
Slab	1.00	8.00	1.20	2.29	2.75	82.5		
Asphalt	0.25	6.50	0.24	3.04	0.72	21.7		
					M _n =	83.5	k-ft.	
	M _u =	39.2	k-ft.	<	φ M _n =	75.2	k-ft.	OK

Rail Anchor Slab Sliding

Check the rail anchor slab for resistance to sliding (P_n) along its base. The weight of the slab and rail resists the impact load through friction between the concrete-soil interface. In the absence of project-specific soil information, the coefficient of friction is taken from AASHTO Table 3.11.5.3-1. The soil is assumed to be a silty or clayey fine to medium sand.

$\phi_{\mathrm{T}} P_{\mathrm{n}} = \phi_{\mathrm{T}} W_{\mathrm{DL}} \tan \phi_{\mathrm{r}} \ge P_{\mathrm{u}} = \gamma_{CT} L_{\mathrm{s}}$				NCHRP Report 663 (7-1,7-2			
$w_{DL} = \sum(Weight) I_{rail}$							
Static Load Equivalent	L _s =	10.0	kip		NCHRP Report 663		
Total Factored Horizontal Force	P _u =	10.0	kip				
Total Dead Load	$W_{DL} =$	60.7	kip				
Coefficient of Friction	$tan\phi_r =$	0.35		A	ASHTO Table 3.11.5.3-1		
Sliding Resistance	P _n =	21.3	kip				
Sliding Resistance Factor	$\phi_{\rm T} =$	0.8		AAS	SHTO Table 10.5.5.2.2-1		
Factored Sliding Resistance	φP _n =	17.0	kip				
P _u = 10	.0 kip	<	φP _n =	17.0 kip	ок		

Rail Anchor Slab Reinforcing

Slab Slab Slab

The critical section of the rail anchor slab shall have sufficient flexural strength (M_n) to resist the impact load and the overhanging dead load of the structural components past Point A. NCHRP Report 663 recommends designing the slab to the appropriate impact loading from AASHTO Table 13.2-1. The structural integrity of the components was not evaluated for use with the static equivalent loads.

w _{s.o.} = t _{slab} l _a γ _{conc.}	$e_{s.o.} = I_a / 2$	$M_{slab} = W_{s.o.} e_{s.o.}$	
			(weight due to asphalt is negligible)
Overhang Weight	w _{s.o.} =	0.26 k / ft.	
Overhang Eccentricity	e _{s.o.} =	-0.85 ft.	
Overhang Moment	M _{slab} =	-0.22 k-ft/ ft.	

The impact load is distributed over the length L_c of the barrier rail. L_c is the critical length of the yield line as calculated in Example 6.3 of this BDM. The rail anchor slab reinforcing is placed in the top of the slab and is designed in a 1 ft. strip.

Critical Yield Line Length	L _C =	10.74	ft. AASHTO A13.3.1-2, Ex. 6
Impact Load	F _t =	54.0	kip AASHTO A13.2-1
Dead Load Factor	γ _{DC} =	1.25	AASHTO Table 3.4.1-2
Collision Factor	_{үст} =	1.00	AASHTO Table 3.4.1-1
	M _u = ·	γ_{DC} (M _{slab} -	+ M_{rail} + M_{coping}) + γ_{CT} F _t H _e / L _C (Moment for rail and coping calculated in table)
Factored Moment	M _u =	14.54	k-ft./ ft.

Design Section

Boolgii Goodioii						
Φ Mn = Φ A _s f _s (d _s - a/2)					AASHTO 5.6.3.2.2
a = A _s f _y / 0.85 f	_c b					
c = β1 / a						AASHTO 5.6.3.2.2
$\beta_1 = 0.85 - 0.05$	(f' _c - 4) ≥ 0.65, for	f' _c > 4 ks	i			AASHTO 5.6.2.2
$d = h - C_{TOP} - d_{ba}$	_r / 2					
ϵ_{s} = 0.003 (d - c) / c					AASHTO 5.6.2.1
Reinforcement Strength	$f_y =$	60	ksi			
Concrete Strength	f' _c =	4.5	ksi			Concrete Class D
Stress Block Factor	β ₁ =	0.825				
Strip Width	b =	12	in.			
Section Height	h =	12	in.			(thickness of the slab)
Top Reinforcing Cover	C _{TOP} =	2.5	in.			(Ref. B-504-V1)
Resistance Factor	Φ=	0.9	(a	assume tensio	n contro	<i>lled)</i> AASHTO 5.5.4.2.1
Depth to Reinforcing	d =	9.19	in.			(assume #5 bar)
Try a Reinforcing Pattern	Try	# 5	Bar @	8 "	C.C.	
Diameter of Reinforcing	d _{bar} =	0.625	in.			
Area of Steel per Strip	A _{s-prov.} =	0.47	' in ²			
Net Tensile Strain	ε _s =	0.034	>	0.005	ок	
M _u =	14.54 k-ft/ ft.	<	Φ M _n =	18.59 k	-ft/ ft.	ок
USE	#5 bars @ 8" C.C.	<u>.</u>	(Typical	ly these bars a	are also	placed in the bottom mat)
Check Minimur	n Reinforcement	Requiren	nent			AASHTO 5.6.3.3
Flexural Cracking Variabili	ty Factor $\gamma_1 =$	1.6				
Ratio f _y /f _u	γ ₃ =	0.67				
Modulus of Rupture	$f_r = 0.24 (f_c)^{0.5} =$	0.51	ksi			AASHTO 5.4.2.6
Section Modulus	$S_c = 1/6 b h^2 =$	288	in ³			
Cracking Moment	$M_{cr} = \gamma_3 \gamma_1 f_r S_c =$	13.1	k-ft./ ft.	CONTROLS	S min r	einf. & is < Φ Mn
1.33 * Factored Moment	1.33 M _u :	19.3	k-ft./ ft.			ОК
Noto: Chook Crook Contro	I by Distribution of	Doinforce	mont			

Note: Check Crack Control by Distribution of ReinforcementAASHTO 5.6.7Note: Check Development Length of Flexural BarsAASHTO 5.10.8.2.4Note: Check Temperature and Shrinkage SteelAASHTO 5.10.6

4

Rail Anchor Slab Summary

Figure 2 - Design Summary